
Course Syllabus

Programming Language
Paradigms

Semester & Location: Fall - DIS Copenhagen

Type & Credits: Elective Course - 3 credits

Major Disciplines: Computer Science, Mathematics

Faculty Members: John Rager

Program Director: Iben de Neergaard idn@dis.dk

mailto:idn@dis.dk

Time & Place: Xxxxxx & Xxxxxx, XX.XX - XX.XX

Description of Course
The main purpose of a programming language is to provide a natural way to express
algorithms and computational structures. Different meanings of “natural” have produced
several distinct styles of languages – these are called paradigms. We will explore some
important paradigms. Students will develop practical competency in languages
representing distinct paradigms (e.g. Clojure, Prolog, Haskell). They will also be
exposed to a selection of other languages. Topics will include object-oriented
programming, functional programming, declarative programming, and programming for
concurrency and distributed computing.

I imagine this course as consisting of three main parts:

1. Functional Programming (Haskell and/or Clojure)

◊ type induction
◊ lazy evaluation – infinite lists and recursion without base cases
◊ currying - calling a function without all its arguments
◊ higher order functions and functions as first class values
◊ folds

2. Logic Programming (Prolog/ ECLiPSe Constraint Programming Language)

◊ logic programming – programming "without algorithms", programming by telling the
computer what is "true"

◊ constraint programming – think Sudoku, but without searching explicitly

3. Object-oriented and Multi-Paradigm Languages (Java 8, Ruby, Scala, C++)
◊ what makes a language OO – encapsulation, inheritance, polymorphism (delegation)
◊ semantic ambiguity in inheritance
◊ functional support in object oriented languages

In addition to these three main parts, we will also discuss general programming language issues
as they arise throughout the course. These include:

◊ Binding times and flexibility - Binding is the word used to describe the process of
associating two things (e.g. a variable and its type, a variable and its value). The
timing of binding is perhaps the most important decision in programming
language design.

◊ Scoping - Given a declaration, where within the program is it valid?

◊ First class values - Something that exists in a programming language is said to be a first-

class value if you can use it in pretty much any possible context. Deciding what

to include in the first-class values of a language is an important decision.

◊ Abstraction - Abstraction - the separation of specification from implementation - can
occur in different realms, including at least data abstraction and procedural
abstraction. Languages differ in how they support this.

◊ Typing: Strong vs. Weak, Static vs. Dynamic Typing, Explicit vs. Implicit

◊ Storage Allocation - where and how does memory need to be allocated? Heaps, stacks

and static allocation.

◊ Dynamic memory - How is memory allocated and deallocated dynamically? Is there
explicit allocation or garbage collection?

Learning Objectives
By the end of this course students will

• Have developed an in-depth understanding of functional, logic, and object-oriented
programming paradigms

• Understand the concepts and terms used to describe languages that support the
imperative, functional, object-oriented, and logic programming paradigms

• Have written programs in functional and logical programming languages using the features
central to those paradigms, thereby obtaining a working knowledge of programming in
those paradigms.

•

Prerequisites
One year of computer science at university level. It is assumed that you are
comfortable with programming in some language.

Faculty
John Rager is a full professor at Amherst College in Amherst, Massachusetts. He has always
been interested in languages, both human and computer. His dissertation was in the field of
symbolic natural language processing and subsequent to that his research has shifted to (among
other things) natural language processing using machine learning. He has also worked on
applying Artificial Intelligence to teaching English to Speakers of Other Languages. This work
was motivated by the difficulties faced by English teachers in Moldova, where he was a
Fulbright Scholar during the 2003-04 academic year. He has recently become interested in digital
humanities and spent part of a recent sabbatical leave working at the Folger Shakespeare Library.

His teaching has often touched on language. For example, he has taught a seminar for first-year
students called “Natural and Unnatural Languages.” The material in that course included
“traditional” natural language processing as done in artificial intelligence, but also a discussion
of rhetorical devices in Shakespeare, a reading of parts of Finnegan’s Wake and a discussion of
language evolution. He has also recently taught a course on Digital Textual Analysis. That
course discussed the computer science (e.g. topic modeling, Naive Bayes classification) used in
papers in digital humanities. The course included both Computer Science and Humanities
students, who worked together in groups on projects.

Readings
Scott, Michael. Programming Language Pragmatics. 2015

Thompson, Simon. Haskell: The Craft of Functional Programming. 2011

Bratko, Ivan. Prolog Programming for Artificial Intelligence.

Fogus, Michael. The Joy of Clojure. 2014

Horstmann, Cay. Java SE8 for the Really Impatient: A Short Course on the Basics

Most of the material in this course will be supplied via in-class examples and handouts. I will
also supply internet resources for the languages we will be studying.

Field Studies
The Field Studies for this course will include visits to companies that use functional and/or
logical programming languages. We will be able to see that these languages are used in the "real
world" and hear from people who use them.

•

Guest Lecturers
Practical details about preparation should go in the course calendar.

Approach to Teaching
I have always believed in teaching students, not material, so expect the course to change in
response to the needs and interests of the students in it.

Most days I will introduce some material and then we will then an exercise to support
understanding the material. There will be lots of examples, and lots of discussion.

Expectations of the Students
1. Come to class. You won't learn much if you do not.

2. Ask and answer questions. You can reply to a question either with an answer or with a
clarifying question. I ask lots of questions – it helps us all stay engaged.

Evaluation
There are several kinds of assignments in this course:

1. Many classes will include exercises. Some will be individual, some group. Your solutions to
them will be gathered into "portfolios" which will be handed in several times during the
semester. Some of these exercises will need to be finished after class.

2. There will be a group project – a modest sized program written in either functional or logical
style. What you do is largely up to you and your group.

3. Short in-class quizzes. These are designed to measure how the understanding is going. They
do not count as part of your grade.

4. One or two people will be assigned as note-takes for each class session. This way the class
together will produce a set of notes of the course.

5. Two graded quizzes, one at the end of each of the first two major paradigms (functional and
logical).

Tentative Outline
CLASS 1 Why are there over 4000 programming languages?

CLASS 2 What is Functional Programming?

 (Possible Exercise (PE): functional style programming)

CLASS 3 Functional Programming: Lists and Recursion

 (PE: lists as fundamental data structures)

CLASS 4 Functional Programming: Higher Order Functions

 (PE: higher order functions to avoid recursions)

CLASS 5 Functional Programming: Infinite Lists, Recursion without Bases Cases, Currying

 (PE: infinite lists)

short tour

CLASS 6 Functional Programming: Folds

 (PE: folds)

CLASS 7 Concurrency and Functional Programming

CLASS 8 Concurrency/Functional Programming WrapUp

CLASS 9 What is Logic Programming? The simplest Prolog program

 (PE: Intro to Prolog)

CLASS 10 Prolog lists and recursion

 (PE: Prolog lists)

CLASS 11 Prolog concluded

Long Tour

CLASS 12 Constraint Programming and Eclipse

 (PE: Intro to Eclipse and the Sentry problem)

CLASS 13 Constraint Programming

 (PE: Game)

CLASS 14 Constraint Programming

 (PE: Puzzles)

CLASS 15 Procedural Programming: C, Cobol and Fortran

 History of Programming Languages

Long Tour

CLASS 16 Object-oriented Programming

CLASS 17 Object-oriented Programming : C++

CLASS 18 Object-oriented Programming: Polymorphism Challenge

 (PE: The Polymorphism Challenge)

CLASS 19 Multi-Paradigm Languages: Ruby

 (PE: Intro to Ruby)

CLASS 20 Multi-Paradigm Languages: Java 8

 (PE: Java 8)

Break

CLASS 21 Project Work

CLASS 22 Project Work

CLASS 23 Project Presentations

End

Exhibition

Grading

Assignment Percent

Participation – behavior that promotes learning by you and others 20%

Exercise Portfolios 30%

Note Taking (not graded, you either did them and get credit, or didn't and don't) 10%

Graded Quizzes 15%

Project 25%

Late Assignments
You need to do the assignments in order to learn the material, so I will usually be willing to
consider extensions. Please talk to me well before the deadline if you think you are going to
have trouble making the deadline.

Use of laptops or phones in class

This is a programming-intensive class. You will need to use your laptop to do the programming.
Please restrict your laptop use to working on coursework.

Academic Regulations
Please make sure to read the Academic Regulations on the DIS website. There you will find
regulations on:

• Course Enrollment and Grading
• Attendance
• Coursework, Exams, and Final Grade Reports

https://disabroad.org/copenhagen/student-resource/academic-regulations/
https://disabroad.org/copenhagen/student-resource/academic-regulations/course-enrollment-grading/
https://disabroad.org/copenhagen/student-resource/academic-regulations/attendance-policies/
https://disabroad.org/copenhagen/student-resource/academic-regulations/coursework-exams-final-grade-reports/

	Course Syllabus
	Description of Course
	◊ type induction
	◊ lazy evaluation – infinite lists and recursion without base cases
	◊ currying - calling a function without all its arguments
	◊ higher order functions and functions as first class values
	◊ folds
	◊ logic programming – programming "without algorithms", programming by telling the computer what is "true"
	◊ constraint programming – think Sudoku, but without searching explicitly
	◊ what makes a language OO – encapsulation, inheritance, polymorphism (delegation)
	◊ semantic ambiguity in inheritance
	◊ functional support in object oriented languages
	◊ Binding times and flexibility - Binding is the word used to describe the process of associating two things (e.g. a variable and its type, a variable and its value). The timing of binding is perhaps the most important decision in programming languag...
	◊ Scoping - Given a declaration, where within the program is it valid?
	◊ First class values - Something that exists in a programming language is said to be a first-class value if you can use it in pretty much any possible context. Deciding what to include in the first-class values of a language is an important decision.
	◊ Abstraction - Abstraction - the separation of specification from implementation - can occur in different realms, including at least data abstraction and procedural abstraction. Languages differ in how they support this.
	◊ Typing: Strong vs. Weak, Static vs. Dynamic Typing, Explicit vs. Implicit
	◊ Storage Allocation - where and how does memory need to be allocated? Heaps, stacks and static allocation.
	◊ Dynamic memory - How is memory allocated and deallocated dynamically? Is there explicit allocation or garbage collection?
	Learning Objectives
	Prerequisites
	Faculty
	Readings
	Field Studies
	Guest Lecturers
	Approach to Teaching
	Expectations of the Students
	Evaluation
	Tentative Outline
	Grading
	Late Assignments
	You need to do the assignments in order to learn the material, so I will usually be willing to consider extensions. Please talk to me well before the deadline if you think you are going to have trouble making the deadline.
	Academic Regulations

